

#### McCarrons Water Treatment Plant- Case **Study in Overhaul of Aging Infrastructure**

January 26, 2022





# Agenda



#### Part One: McCarron's WTP Improvements Project

- Saint Paul Regional Water Overview
- McCarron's Water Plant
- Project Scope
- Key Project Technical Challenges
- Pilot Testing Process
- Project Funding
- Part Two: Design Build Delivery Will
  - Intro to Progressive Design Build
  - Why SPRWS selected PDB for the McCarron's WTP project
  - Requirements/Recommendations for Successful PDB delivery
  - Procurement Phase Recommendations for PDB
  - Contracting for a PDB Project

#### **Q&A**



#### Saint Paul Regional Water Overview





# Saint Paul Regional Water Services

- 14 Communities Served
- 450,000 Customers
- 40 Million Gallons per Day (Average)
  - Enough to cover a football field with 110 feet of water
- Source water: Mississippi River (via a chain of four lakes)
- McCarron's Treatment Plant is the sole water treatment facility





## McCarron's Water Treatment Plant



- Construction started in mid-1910s
- Backbone of the facility built by 1925
- Additions in the late 1930s and 1950s
- Much of the infrastructure is nearing 100 years in age
- Water quality remains excellent, but reliability concerns grow with age
  - Partnership for Safe Water Phase IV
  - President's Award for Water Quality







#### **McCarrons Water Treatment Plant**





## Setting the Stage for the Next 100 Years













#### **SPRWS Water Treatment Process**







#### **Existing Plant Age**





## **Existing Plant Flow Path**





## **Existing Water Quality**



#### Existing treatment is highly optimized



# **Project Drivers**

- Maintain Exceptional Water Quali
  Provide flexibility for future capacand treatment
- Improve plant reliabilityMaintain public trust







#### **Project Scope**





#### **Project Scope**





#### **Project Scope**





## New Lime Feed





#### **New Solids Contact Clarifiers**







#### **Recarbonation and Ozone**







### **Chemical Systems**





# Lab and Operations





#### **New Flow Path**





## A Legacy of Exceptional Water Quality







#### **Construction Sequencing**





### Clarifier 1 & SSB Demo





## Softening Clarifiers – Structural Concrete





# Softening Clarifiers – Process Mech & Equipment





## Softening Clarifiers – Structural Concrete





#### Recarb/Ozone/Gallery/Lime - Structural Concrete





#### Recarb/Ozone/Gallery/Lime





# Recarb/Ozone - Process Mechanical & Equipment





#### **Raw Water Lines**





#### **Final Site Civil**





# **Project Timeline**



| Task Name                             | Duration | Start    | Finish   | 2021 |    |    | 2022 |    |    | 2023 |    |    | 2024 |    |    | 2025 |    |    |    |    |    |    |    |
|---------------------------------------|----------|----------|----------|------|----|----|------|----|----|------|----|----|------|----|----|------|----|----|----|----|----|----|----|
|                                       |          |          |          | Q1   | Q2 | Q3 | Q4   | Q1 | Q2 | Q3   | Q4 | Q1 | Q2   | Q3 | Q4 | Q1   | Q2 | Q3 | Q4 | Q1 | Q2 | Q3 | Q4 |
| 10% Preparatory Design Workshops      | 129d     | 01/22/21 | 07/21/21 |      |    |    |      |    |    |      |    |    |      |    |    |      |    |    |    |    |    |    |    |
| 30% Schematic Design                  | 97d      | 04/15/21 | 08/27/21 |      |    |    |      |    |    |      |    |    |      |    |    |      |    |    |    |    |    |    |    |
| 60% Design                            | 162d     | 08/30/21 | 04/12/22 |      |    |    |      |    |    |      |    |    |      |    |    |      |    |    |    |    |    |    |    |
| 90% Design                            | 68d      | 01/26/22 | 04/29/22 |      |    |    |      |    |    |      |    |    |      |    |    |      |    |    |    |    |    |    |    |
| 100% Final Design                     | 43d      | 05/02/22 | 06/29/22 |      |    |    |      |    |    |      |    |    |      |    |    |      |    |    |    |    |    |    |    |
| Construction Start                    | 0        | 05/01/22 | 05/01/22 |      |    |    |      |    | +  |      |    | /  |      |    |    |      |    |    |    |    |    |    |    |
| Early Work Package Construction       | 130d     | 05/01/22 | 10/27/22 |      |    |    |      |    |    |      |    |    |      |    |    |      |    |    |    |    |    |    |    |
| Main Work Package Construction        | 536d     | 10/15/22 | 11/01/24 |      |    |    |      |    |    |      |    |    |      |    |    |      |    |    |    |    |    |    |    |
| Acceptance Testing (Through Figure 8) | 110d     | 09/01/24 | 01/30/25 |      |    |    |      |    |    |      |    |    |      |    |    |      |    |    |    |    |    |    |    |
| New Facilities Online                 | 0        | 02/01/25 | 02/01/25 |      |    |    |      |    |    |      |    |    |      |    |    |      |    |    |    | ٠  |    |    |    |
| Demolish Existing Facilities          | 75d      | 02/01/25 | 05/15/25 |      |    |    |      |    |    |      |    |    |      |    |    |      |    |    |    |    |    |    |    |
| Build New Lab / Office Space          | 78d      | 05/15/25 | 09/01/25 |      |    |    |      |    |    |      |    |    |      |    |    |      |    |    |    |    |    |    |    |



#### **Pilot Plant**





# Why Pilot Test?





#### Major Pilot Components







Solids Contact Clarifier

Lime Ferric Chloride Alum 60-140 gpm Recarbonation (Gas and PSF)

CO2 Hydrofluorosilicic Acid

10-20 gpm



Ozone Contactors (Ozone, AOP)

Air/Oxygen Hydrogen Peroxide Calcium Thiosulfite 4-10 gpm/train



BAC Filters (4 trains x 2 each)

0.3-1.0 gpm/filter



Disinfection Contactors (3 Trains)

Sodium Hypochlorite Liquid Ammonia Sulfate Caustic 0.5-1.5 gpm/train



Pipe Loops (4 Trains x 2 Loops each)

**Dipotassium Phosphate** 

6.5 gpm total during flushing cycle 40

## **Pilot Process Flow and Details**





- Flow: 1 Million Gallons Per Week
- Pumps: 20
- Chemical Feed Pumps: 21
- Chemicals Fed: 12
- Meters/sensors: 76
- Online Analyzers: 55
- Sampling ports: 247
- Sample IDs: 70
- Analytes tested for: 60+
  - Total number of analyses done:
    - Continuous: 66
    - Daily: 35

 $\checkmark$ 

- Weekly: 314
- Seasonal: 119

# **Overall SCC Performance is Good**

- Typical Performance up to 1.75 gpm/sf @ 75F
  - Turbidity <4 ntu</p>
  - 45-50% TOC removal
  - Hardness closely matches plant water
- Additional Testing
  - Optimize solids thickness
  - Optimize downstream filter performance
  - Trial ferric sulfate and sodium silicate





# Stable pH in 5 minutes with gas diffusion

10 States Standards Recommends 20 Minutes







| pH at vario | ous sample | e ports |         |      |         |      |      |      |      |  |
|-------------|------------|---------|---------|------|---------|------|------|------|------|--|
| Flow        | 16 gpm     |         |         |      |         |      |      |      |      |  |
| Detention   | Time per F | Pass:   | 2.5 min |      |         |      |      |      |      |  |
| Basin 1     |            |         |         |      | Basin 2 |      |      |      |      |  |
| <br>10.86   | 8.66       | 8.49    | 8.74    |      |         | 8.71 |      | 8.75 |      |  |
| 10.79       | 8.84       | 8.84    |         |      |         |      |      |      |      |  |
| 10.77       | 8.64       | 8.75    |         |      |         |      |      |      |      |  |
| 10.66       | 9.16       | 8.76    |         |      |         |      |      |      |      |  |
| 10.37       | 9.24       | 8.67    |         | 8.68 | 8.65    |      | 8.73 |      | 8.76 |  |

CO2 Addition

## Taste and Odor Spiking







#### GAC Biofilters Can't Remove all CECs!





# **Ozone Provides Enhanced CEC Removal**



#### 1,4-Dioxane Spiking





# Part Two: Design Build Delivery





## **Project Challenges Identified**



- Size of Project
- Importance of Final Performance
- Requirement to maintain WTP operation during construction
- All work adjacent to critical, 100-year-old infrastructure
- Countless technologies and layouts available for consideration

# The Ideal Delivery Method



#### Size of Project

- Recognize that the design firm will probably make some mistakes. Ensure adaptability.
- Importance of Final Performance
  - Design firm provides performance guarantees to ensure that the facility performs as specified
- Requirement to maintain WTP operation during construction
  - Design and construction professionals collaborate from the start to develop the best project phasing plan
- All work adjacent to critical, 100-year-old infrastructure
  - Design and construction professionals collaborate from the start to find ways to protect infrastructure
- Countless technologies and layouts available for consideration
  - Owner, designer, and construction team all able to provide input to find optimal layout

# **Enter: Progressive Design Build**





- Scenario: Adding a bathroom to your house
- Challenges:
  - Performance required
  - Working around existing infrastructure
  - Need to continue using existing plumbing while building
  - Want to collaborate on layout
- Simple solution: hire one contractor/plumber to do the work
  - A single source of accountability you know exactly who is at fault if your toilet doesn't flush

### What is Progressive Design-Build



# Hiring one firm to lead both the design and the construction effort

# **Advantages of Progressive Design-Build**



#### Design-Bid-Build

- Separate contracts for design and construction = opportunity for fingerpointing
- Limited involvement of construction professionals early on = more challenging to plan construction phase
- Construction team selected on low-bid basis = chance that an inexperienced firm does the work
- No construction team under contract = more difficult to get accurate construction estimated

#### **Progressive Design-Build**

- One contract for design and construction = clear accountability
- Construction professionals involved from day one = can develop optimal construction plans
- Design-Build team selected on bestvalue basis = you know what you're getting
- Construction team is on board during design phase = better construction estimate accuracy

# **Project Challenges Solved by PDB**



- Size of Project
  - Design firm remains on board for adjustments during construction phase
- Importance of Final Performance
  - Performance guaranteed by design-build contract
- Requirement to maintain WTP operation during construction
  - Construction team involved from day one
- All work adjacent to critical, 100-year-old infrastructure
  - Construction team involved from day one
- Countless technologies and layouts available for consideration
  - Owner, designer, and construction team develop optimal layout together

# Quick Note: Why Progressive?



- Fixed Price Design-Build: same singlecontract delivery but used when you're pretty certain what you want from the outset
- Progressive Design-Build: used when you want to work with the design and construction team to find the best solution
- Example: Building your dream house.



# When is PDB Right for You?

#### Performance is very important and measurable

A performance-based contract is only a benefit under these circumstances

#### Your project is technically challenging

The more challenging a project, the more you benefit from the combined design and construction expertise of a design-builder

#### Your project is fairly large

PDB requires a lot of procurement, contract, and legislative legwork that is only merited on larger projects





## What You Need to Succeed



- Get legislative approval from MN state government
- Hire an Owner's Representative (highly recommended)
- Draft a contract that works for you
- Develop a strong procurement strategy

## Legislative Approval





- Progressive Design-Build is not allowed in all contexts in MN
- SPRWS had to obtain legislative authority to deliver this project via PDB
- Legislative process is one reason why PDB isn't ideal for small projects in MN today

#### **Owner's Representative – Procurement Benefits**



- Develop a procurement plan (and provide credibility)
- Create procurement documents
- Review facility drawings to identify valuable info
- Identify performance-based technical requirements
- Create a tight scope for design-phase work
- Assist with Evaluation Process
- Answer questions from interested teams
- Assist with Contract Negotiations



# Owner's Representative – Design & Construction Benefits





![](_page_55_Picture_3.jpeg)

- Assist with reviewing designs, specs, and other technical material
- Provide project management support
- Help understand project cost estimates and confirm validity of DBs assumptions/risk pricing
- Provide third party inspection of critical construction work
- Augment Owner's staff with professionals who deliver these types of projects for a living

#### 60

# **Contracting for PDB**

#### Two phase contract

- Get commitments on construction phase pricing in a competitive environment
- Leave an "off-ramp" in case you decide not to proceed with construction as planned

#### Start developing a draft contract early

- We started with a DBIA contract template and modified it for over a year prior to hiring
- Setting up a performance-based contract is very different. You'll need a while to get used to terminology & concepts and to get buy-in.
- Get comments on the draft contract during the procurement stage

![](_page_56_Picture_9.jpeg)

![](_page_56_Picture_10.jpeg)

# **Procurement Process Recommendations**

![](_page_57_Picture_1.jpeg)

![](_page_57_Picture_2.jpeg)

- Two step procurement RFQ then RFP
  - Will get higher quality proposals if only asking for a few
- One-on-one meetings
  - Teams share proprietary design concepts and see if they fit with Owner's goals
- Ask for useful information. We got:
  - Proposed layouts for new facility
  - Construction sequencing plans to validate feasibility of proposed layout
- Make sure that you provide adequate info.
- Get early buy-in from procurement folks

## Getting the best deal

![](_page_58_Picture_1.jpeg)

Phase 1 Design Phase Price (Proposed/Known)

÷

Phase 2 Estimated <u>Cost</u> of Construction (Estimated by Owner's Rep or budget)

÷

Markups on Construction Phase Work (markups are a Proposed/Known percentage of construction phase costs)

![](_page_58_Figure_7.jpeg)

=

WHOLE PROJECT COST ESTIMATE

Ask for construction phase markups during procurement!

## Wrap-Up

![](_page_59_Picture_1.jpeg)

- Progressive Design-Build can be a really useful tool to have available to you
- Delivering a project via PDB when you're used to DBB can be challenging
- For some projects, the benefits of PDB are worth the risks
- In many places, PDB is becoming much more common

![](_page_59_Picture_6.jpeg)

#### Questions?

![](_page_60_Picture_1.jpeg)

Contact Us:
 Will Menkhaus – <u>William.Menkhaus@ci.stpaul.mn.us</u>
 Roger Scharf – <u>Roger.Scharf@jacobs.com</u>

![](_page_61_Picture_0.jpeg)

10 10 10 10 10 10 10 10 10 10 10 10

![](_page_61_Picture_1.jpeg)

![](_page_61_Picture_2.jpeg)